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1 Summary 
Despite potential benefits, formal specification is rarely applied as part of software development.  
Most programming languages do not contain precise semantics to allow reasoning about 
application correctness.  Formal specifications are either only loosely tied to the code that is 
deployed, or, when code is synthesized, results in an inefficient implementation. 

FORMED seeks a middle ground between formal specification and traditional programming.  It 
first defines a formal semantics for UML. An UML program can then be formally analyzed as 
well as translated to an efficient, deployable implementation.  The formal analysis is done by 
shallow embedding of the semantics in a specification language that is amenable for analysis. 
The formal specification of the UML program is also executable. We use correspondence testing 
to validate that the formal model and the implementation have the same executable behavior and 
to increase confidence that the properties proven with the formal specification also hold in the 
implementation.  

As shown in Figure 1, FORMED starts with a subset of the Unified Modeling Language (UML), 
including a model-level action language, and extends it with formal semantics.  A code generator 
then translates the UML program into the ACL2s formal specification language, a subset of 
Common Lisp, and an efficient implementation.  Application developers use ACL2s to define 
and prove key properties of the application, building up libraries of theorems. Since the formal 
model of the UML program in ACL2s is executable, we can run concrete tests on it. 
Correspondence testing applies the same test cases to both the ACL2s model and the 
implementation code to validate that the both exhibit the same behavior. This increases the trust 
on both the ACL2s and the implementation of the UML model. 

Figure 1 FORMED generates software specifications and code from a common base model producing 
corresponding representations of an application 
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1.1 Task Objectives 
FORMED aims to create a software development environment and tools that enable a wider 
group of software application developers to utilize and exploit the benefits of formal verification.  
To achieve this, we define the formal semantics of a subset of UML and map it to the ACL2s 
specification language.  We use the ACL2s theorem prover to prove properties of the application.  

The tools are packaged within an Eclipse Integrated Development Environment (IDE), including 
a custom plug-in that allows navigation between the UML and ACL2s views of the application, 
to aid developer understanding of the mapping.   

We apply the FORMED approach to a pedagogical example and a real-world military example to 
drive development of the toolset and supporting theorems and lemmas.   

1.2 Technical Problems Addressed 
FORMED addresses the technical problems of defining semantics of a subset of UML, 
transforming UML to a specification language that can be formally be reasoned about, specifying 
application level theorems and identifying proof strategies to automatically prove these 
theorems.   

In particular, proof automation, represents the biggest challenge.  Ideally, the application 
developer would operate only at the UML level and be completely insulated from the process of 
proving them.  While we have automated some of the theorem proving, formal verification 
remains a hard problem and, in general, requires the application developer to interact with 
ACL2s theorem-prover. The FORMED developer often needs to change the contexts between 
the UML and ACL2s views of the application.  FORMED provides an Eclipse plugin that makes 
this context switching easier.   

1.3 General Methodology 
The FORMED program first provides a shallow mapping from UML to ACL2s.  To achieve the 
mapping, we define a reusable platform model called the MddContext that defines an execution 
platform, including a stack and heap that support the operational semantics of UML application.  
We prove a set of theorems that characterize the reasoning about any UML application built on 
the MddContext.   

We then identify properties of the UML semantics that could be used as lemmas in support of 
application level theorems.  We use a pedagogical example of a hotel room lock [1] and a 
military equipment management protocol to drive the identification of application level theorems 
to prove.   

1.4 Important Findings 
The shallow mapping from UML to ACL2s provides a rapid way to create a formal specification 
that conformed closely to the implementation, also derived from the same UML model.  The 
FORMED Eclipse plugin allowed context switching between UML and ACL2s views of the 
application.  A test framework executes test cases against both and compare results, verifying 
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behavioral correspondence and providing a higher level of confidence that the transformations 
were applied consistently generating ACL2s and implementation code.   

The MddContext ACL2s model of the execution platform provides a reusable component, with 
supporting theorems, for all FORMED UML models, as described in section 4.6.   

Using ACL2s, we were able to automatically generate and prove termination of functions, 
function contracts (including avoidance of NULL pointers), and read-only functions, as 
described in section 4.15. We automated the generation of other application level theorems, such 
as uniqueness of object values within a collection and the expression of several other invariants. 
However, proving these theorems required developers to interact with ACL2s and proof 
automation for application level theorems remains a challenge.  More application level theorems 
remained to be proven, and require more platform and UML semantics theorems to support those 
proofs.   

1.5 Implications for Further Research 
FORMED provides a baseline for integrating formal verification with software development.  
With further work in the areas of theorem definitions and developing domain specific proof 
strategies, the formal verification aspect could be completely hidden from the user while proving 
a larger set of properties, while still allowing access to ACL2s for advanced theorems.  The 
support of OCL for UML level theorems and its translation to ACL2s would further hide the 
formal verification from the application developer.  Completion of the application specific 
counterexample generation for the heap, described in section 4.9, would also ease the ACL2s 
learning curve.   

We learned that as the implementation of function affects the efficiency of its execution, the 
definition of function in ACL2s also affects the theorem proving process. Therefore, one should 
aim to have the simplest possible, and not necessarily the most efficient translation to ACL2s, to 
improve reasoning and proof automation.  We did not get far enough to determine if these 
tradeoffs also exist at UML level. 

Other theorem patterns, such as reasoning about the implementation’s heap size or the effect of 
fixed size integers and possible overflow or underflow conditions, could be added to the 
FORMED theorem templates.  Improvements in the heap and pointer implementations may also 
improve theorem proving.   

The relationship between proofs and testing is also an area for further research.  ACL2s already 
uses the sub-goals generated by ACL2s in the process of proving a theorem to test the 
conjecture. We believe these tests can be harnessed to generate a property-directed test-suite and 
can be used to validate that the implementation also satisfies the same property with a higher 
degree of confidence. Furthermore, the counterexamples generated by ACL2s from failed proof 
attempts could be stored for later use as test cases, as they typically represent the corner cases of 
a function or algorithm.   

Research into management of the theorems and lemmas to prove the application level properties 
would both guide the novice ACL2s user and optimize the verification process.   
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2 Introduction 
Formal methods are rarely applied to software development.  Current software development 
methodology focuses on a managed and monitored process and testing to ensure a high quality 
product.  Software development requires tasks that are schedulable and can be measured for 
progress.  And software must run efficiently in time and memory, especially for embedded 
systems applications.   

Formal models, when used, are often disconnected from the fielded implementation.  Initial 
models are created and analyzed to generate requirements, but the connection back to the model 
is through manual implementation and traceability matrices.  Producing an efficient 
implementation from a formal specification directly is also exceedingly difficult.  Specware [2], 
for example, uses successive refinement to synthesize an implementation from a specification, 
but the refinement is a manual, multi-step process.   

Other approaches require formal models to be complete and sound before moving to 
implementation can even begin.  Building a proof structure is an all-or-nothing process that is 
difficult to quantify, predict, and schedule.  The proof structure can be unstable with respect to 
changing requirements, or even changing understanding of requirements.   

FORMED adds formal methods to the software engineering workflow by adding formal 
executable semantics to a high-level design language many developers already know, UML.  
Development remains predictable (as predictable as software projects can be anyway) while 
allowing formal verification of a specification closely related to the deployed implementation.  

Other works in this area have focused on analyzing the semantics of UML itself, such as state 
machines or activity diagrams.  These projects have not addressed how to create software 
applications that can be formally analyzed.   

This report assumes the reader has some background in general software engineering concepts, 
object oriented design, UML, and formal verification, but need not be an expert in any of those 
areas.  

3 Methods, Assumptions, Procedures 

3.1 Tools 
FORMED combines formal verification with model-based software development.  FORMED 
integrates separate tools under the Eclipse framework, providing developers an IDE that allows 
them to seamlessly transition between software and verification tools.  The tools were selected 
based on availability, support for key standards, integrability, and usability.   

The UML editor, Topcased, is an open source tool that supports both UML and SysML OMG 
standards, and operates under Eclipse.  PathMATE is a commercial UML code generation tool 
that integrates with multiple UML editors, including Topcased.  PathMATE supports an 
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implementation of the UML action semantics meta-model, called PAL, although it does not 
support the ALF [3] action language syntax that is now also an OMG standard.  ALF does not 
yet have a complete implementation, so PAL was chosen as the model level language.  Both 
ALF and PAL conform to the UML standard for action semantics.  PathMATE is also an Eclipse 
based tool.   

We chose ACL2s, the ACL2 Sedan, for several reasons. First of all, it is based on ACL2, which 
provides the theorem proving power and libraries of ACL2. Second, ACL2 is executable. That 
helps immensely with validating the formal semantics, e.g. by allowing us to check for 
correspondence between UML code and the translated ACL2s code by executing both on the 
same input code. Third, UML is typed and we wanted a powerful mechanism for not only 
describing types, but also automatically inferring and proving type-like theorems. The ACL2s 
defdata framework allows us to define a rich collection of types and the ACL2s defunc macro 
allows us to define typed functions.  Fourth, the ACL2s counterexample generation capability 
would allow us to find modeling errors automatically.  Fifth, ACL2s runs its editor and sessions 
under Eclipse.   

We initially researched Octopus as the tool for translating OCL, but discovered that it was no 
longer supported.  The Eclipse Modeling Framework (EMF), Eclipse’s library of support for 
UML that both Topcased and PathMATE use, includes support for parsing OCL, so we targeted 
that for integration.  However, once we translated UML to ACL2s, we could write our own 
theorems directly in ACL2s.  We chose to focus on theorem proving as a higher risk task, rather 
than implementing the OCL to ACL2s translator.   

Finally, we developed the FORMED plugin to integrate these tools more closely.  FORMED 
generates the UUIDs of model elements into the ACL2s code, and the plugin uses the 
(Universally Unique Identifiers) UUIDs to map the ACL2s functions and theorems back to the 
source UML model element.  This mapping allows fast transitions between UML and 
verification views, to both learn the mapping patterns and gather information for proofs.   

3.2 MddContext 
We needed to adapt the imperative UML action language into the function language of ACL2s.  
In addition, we needed to model a stack and a heap to capture the state of the application, which 
called the MddContext.  The MddContext is passed around to all ACL2s statements to capture 
the changes to the state in a functional way.   

The first implementation of the context used a single threaded object, stobj, to store the 
application state.  However, the defdata construct was much more flexible as an implementation.  

Section 4.6 describes the context in more detail. 
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3.3 UML to ACL2s Translation 
PathMATE provides the capabilities to translate a UML model into various textual forms, 
including code, documentation, schemas, etc.  PathMATE uses a template language to navigate 
the UML model, extract information and insert that information as text, mixed with hardcoded 
test of the template.  For example, the template code below navigates all the packages in the 
model, then all the classes in each package, and outputs the class name and description, followed 
by the class’ attributes’ names and descriptions.  Text enclosed by square brackets “[]” either 
navigates the model or extracts model information.  Text not enclosed is generated directly into 
the output.  

[FOREACH package IN system.domains] 
Class and Attributes report for [package.name] generated on [date] 
[  FOREACH class IN package.objects] 
================================================================== 
[class.name]  
description: [class.description] 
[    FOREACH attr IN class.allAttributes] 
[attr.name]  ([attr.dataType.name]) 

description: [attr.description] 
[    ENDFOREACH /* attr */] 
[  ENDFOREACH /* class */] 
[ENDFOREACH /* package */] 

Figure 2 PathMATE templates generate code and reports from UML models 

PathMATE comes with templates that generate Java, C, and C++ code, as well as reports.  We 
wrote new templates that generate the ACL2s functions and theorems, but reused some of the 
provided template that supported model navigation.   

3.4 Application to Examples 
We created example UML models, one of a hotel room’s door lock and the hotel systems around 
it, and a partial model of a military equipment management system.  After creating the model, 
we used an iterative process, cycling between generating the ACL2s, attempting to get ACL2s to 
accept the functions for the executable parts, trying to prove generate theorems, and fixing the 
model, transformation rules, or adding new theorems, as needed.   

Initial repair work was more on getting the initial transformation templates correct.  Then, as we 
did proofs of our theorems, we discovered additional semantics or lemmas that needed to be 
defined, either about the MddContext or derived from the UML models.  Often we identified one 
lemma required for one proof using a model element, generalized that lemma in a template, and 
regenerated the lemma for every model element of that type.  Those new lemmas were useful in 
other proofs.   

This generated more lemmas than perhaps were needed, since not all model elements were 
involved in a proof.  No attempt was made to find the optimal set of theorems and lemmas.   
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3.5 FORMED Pair Programming Process 
We envisioned FORMED as a way to rapidly create a formal specification that closely 
conformed to an implementation, using patterns expressed as templates.  We assumed the initial 
application developer would have little ACL2s experience, but would be paired with a formal 
verification engineer/ACL2s expert.  The verification engineer should not have to become an 
expert in the subject matter being developed.  Initially, Northeastern served the verification 
engineer role while BAE Systems engineers played the part of novice ACL2s users.   

During the second half of the project, BAE added a verification engineer familiar with other 
languages and tools, such as Coq.  While the language was easy to pick up, based on Lisp, the 
tools took a while to learn.  Documentation seems to be written for other researchers, rather than 
for novices.  Reading through the documentation a couple of times while ascending the learning 
curve helps the novice to pick up knowledge that requires hands-on experience to put together.   

4 Results and Discussion 
This section describes in more detail the work performed, tools used, tradeoffs made, and results 
collected. 

4.1 UML as a Development Language 
FORMED uses UML as a high-level language for software development, using both graphical 
and textual representations to capture software structure and behavior.  The FORMED UML 
profile builds on work to strengthen UML’s semantics to make it an executable specification 
language [4].  Through code generation, FORMED produces deployment code.  FORMED uses 
the PathMATE toolset [5], a commercial product, to provide deployable code generation. 

While not specific to the UML profile, one of the key benefits of the FORMED approach is the 
separation of application concerns into separate UML packages.  Each package models the 
problem space of the area, focusing only on the rules, policies, and behaviors of that area.  A 
façade pattern wraps the package in an API minimizing coupling between packages.  This also 
enables reasoning about the correctness of packages to be verified separately, and composed to 
build the application, as described in section 4.13. 

As verification engineers are scarce resources, FORMED envisions pairing application 
developers with verification engineers as a team to do software modeling and formal verification.  
Rather than requiring the verification engineer to become an expert in the application domain, 
the developer creates the UML model and translates it to ACL2s.  The verification engineer then 
uses the ACL2s theorem prover to prove correctness and safety properties.   

Other studies map a subset of a development language to a formal language.  Lambda S5 verifies 
Javascript code through a similar shallow mapping transformation [6]. They describe their 
process as semantic altering transformations, a bit tongue-in-cheek, but they describe restrictions 
on the use of features within the source language.  For example, Javascript functions can also be 
treated as objects, but at a cost in Lambda S5.  
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4.2 ACL2s 
We chose ACL2s, the ACL2 Sedan, for several reasons. First of all, it is based on ACL2, which 
provides an applicative programming language to model systems, a logic and a powerful theorem 
prover to reason about them. Second, ground expressions in ACL2 are executable. That helps 
immensely with validating the formal specification e.g. by allowing us to check for 
correspondence between UML code and the translated ACL2s code by executing both on the 
same inputs. Third, UML is typed and we wanted a powerful mechanism for not only describing 
types, but also automatically inferring and proving type-like theorems. The ACL2s defdata 
framework allows us to define a rich collection of types and the ACL2s defunc macro allows us 
to define typed functions.  Fourth, we wanted the ability to find bugs in our models. After all, 
during the design process, models almost always contain errors that we want to quickly find and 
correct.  The ACL2s counterexample generation capability allowed us to find errors 
automatically. 

ACL2s is taught to freshmen in Northeastern’s computer science program [7], so it is not 
unreasonable to expect software developers to be able to pick it up and it is based on Lisp, an 
executable programming language. 

ACL2s also provides automated proof of termination when admitting functions.  Proving 
termination is a precondition to other proof properties.  Only functions derived from while loop 
action language could not have termination proven, because the loop variables were hidden on 
the MddContext stack rather than ACL2s variables or parameters.   

4.2.1 Encapsulation 
Defdata records are similar to structs in C.  Defdata provides no support for encapsulation or 
information hiding.  For example, MddContext includes an attribute heap representing heap 
memory.  Access to the heap goes through the API functions.  A set of theorems proves that the 
other MddContext API functions do not change the heap, but only addToHeap, rmFromHeap, 
and writeAttr change the heap.  However, since the MddContext, without information hiding 
protections, is passed around, separate lemmas must be written to prove that other functions do 
not alter the heap.   

4.3 FORMED Eclipse Integration 
FORMED provides an integrated workbench for high assurance software, integrating software 
design and formal verification tools under the Eclipse integrated development environment 
(IDE).   

Software developers model the system using the Unified Modeling Language standard from the 
Object Management Group, and generate application code and ACL2s specification code at the 
same time.  With help from a verification engineer, theorems about the application model are 
developed and proven using the ACL2 Sedan.  A FORMED plug-in provides an Eclipse 
perspective (an arrangement of windows within the IDE) and the ability to navigate between the 
ACL2s code and the UML model.  A JUnit project provides the framework for correspondence 
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testing to show that both executable versions of the model, Java and ACL2s, behave equivalently 
for all defined test cases.  

4.4 Examples 
We use 2 examples to check the development of FORMED and to drive the identification of 
theorems, lemmas and proofs.  The first example models a hotel, the management of 
programmable card keys, and the protocol for keeping keys in sync with the room locks while 
guaranteeing security for guests.   

The second example implements a portion of a military protocol for remotely managing 
equipment in the field.  This example uses UML state machines to manage unreliable 
communications between the equipment and the management server.   

4.5 UML to ACL2s Mapping 
The Unified Modeling Language (UML) is a standard object-oriented software design notation 
created and supported by tool vendors [8]. The semantics of UML were left weak by design, to 
allow tools to support the array of UML dialects that could not be agreed upon in the standard.  
However, the standard allows profiles to extend the language with custom semantics and create 
domain-specific languages based on the notation. 

The FORMED UML profile uses a subset of UML model elements and restricts the usage of 
these elements, while enhancing the profile with executable semantics.  The FORMED profile 
consists of UML classes, properties, operations, and associations.  The profile also includes flat 
finite state machine constructs to capture lifecycle and asynchronous behavior.  A model level 
action language, conforming to the UML meta-model for action language [3] and with syntax 
similar to Java, captures the detailed behavior of the model.  FORMED uses the PathMATE 
UML code generator to map the UML model elements to ACL2s. 

FORMED performs a shallow mapping of UML into ACL2s.  This mapping is automated with a 
customizable transformation tool that is configured to generate ACL2s, and make use of the 
defdata and defunc constructs described in the next sections.  The FORMED transformation 
generates ACL2s executable code based on the UML executable semantics and also generated 
auxiliary functions and lemmas for each model element's semantics and application level 
theorems, such as invariants. 

The generated ACL2s constructs run atop the MddContext, a platform model for managing the 
applications state, described in MddContext Platform Model section 4.6.  The tables below 
summarize the mappings of UML model elements to ACL2s constructs for class diagram 
elements (Table 1), state machines (Table 2), and UML action language (Table 3).  Implemented 
constructs are shown in green, partially implemented in yellow, and not implemented in red. 
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Table 1 UML class diagram elements mapped to ACL2s constructs 
Class Diagram 
Model Element ACL2s Implementation Status Comment 
Façade Component ACL2s module Done 
Attribute record entry within defdata 

definition 
Done 

Class Defdata - data definition, with 
records. 

Done 

Data Types Base ACL2 data types, integers, 
booleans, defdata for 
enumerations 

Done Supported in translation, 
proofs based on rational 
numbers not performed. 

Association defdata record.  Plus link, unlink, 
and navigation functions.   

Done 

Associative Class Not Done Can be worked around 
using multiple 
associations. 

Generalization/ 
Specialization 

Type record in every generated 
class 

Done 

Class Operation ACL2s function Done 
Façade Operation Façade function Done 
Parameter function parameter Done 
Composition/ 
Aggregation 

None Not 
Planned 

Association decorations 
may have some semantic 
meaning that can be used 
in proofs. 

Table 2 UML state diagram elements mapped to ACL2s constructs 
State Diagrams 
Model Element ACL2s Implementation Status Comment 
State Enumeration of states, state 

attribute in defdata record. 
Done 

Transition Either as a lookup table or 
complex condition statements 

Done 

Entry/Exit/Transition 
Actions 

Done 

Ignored Events Done 
Guards Not 

Planned 
Deferred Events Not 

Planned 
Nested States Not 

Planned 
History Not 

Planned 
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Table 3 UML action language statements and expressions mapped to ACL2s constructs 
Action 
Language 

Model Element ACL2s Implementation Status Comment 
Create constructor provided by defdata Done 
Delete Destructor function that cleans 

up links across associations. 
Done 

Find Separate recursive function Done 
Foreach Separate recursive function with 

loop block as implementation 
and local context passed in. 

Done 

Link Call to association function to 
add to list 

Done 

Unlink Call to association accessor to 
remove from list 

Done 

Navigation Call to association accessor 
access list 

Done 

Downcast 
Navigation 

Base function that checks 
object's classes against 
requested downcast class and 
returns nil if not matched. 

Done 

Attribute Access - 
read 

mget record access plus update 
to context. 

Done 

Attribute Access - 
write 

mset record access plus update 
to context. 

Done 

While loop Separate recursive function with 
loop block as implementation 
and local context passed in. 

Partial Translation supported but 
not proof automation.  
Challenge: detection and 
specification of 
termination conditions. 

Service Handle Done 
Sort Objects Not 

Planned 
If Done 
Return Partial Only supported at end of 

operation.  Reviewing 
continuation passing style 
(CPS) pattern.  Current 
requirement is single-
entry-single exit 
operations. 

Break Not 
Planned 
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Local Variable Done 
Binary Operators Partial Math, equality operators 

complete, missing bit shift 
operators (see ACL2 ASH) 

Unary Operators Done 
Cancel Event Done 
Generate Event Done 
Operation Call direct function call, creating new 

stack context 
Done 

4.6 MddContext Platform Model 
FORMED creates an abstract ACL2s model of the application execution environment, called the 
MddContext.  The context models the computing platform, independent of target applications, 
and is reused across all FORMED analysis.  This section described the MddContext, its 
semantics, its API, and some of its theorems.   

The FORMED profile's object-oriented (OO) semantics presented a challenge in mapping to a 
functional language like ACL2s.  Functional languages define functions purely by their inputs 
and outputs, and there is no internal state maintained.  OO semantics allow for a global state 
represented by a heap, but global state is not permitted in functional languages.  Similarly, we 
convert iterations to recursive functions, but the recursive functions need to operate on the same 
stack as the function that it is called from.  This led to the modeling of the application's global 
state in a defdata construct called MddContext, shown in the code below.  This context is passed 
through every statement, using a seq macro to make the generated code look more like sequential 
programming statements. 

(defdata HeapMemory (map address all)) 
 (defdata MddContext-type 
  (record (heap . HeapMemory) 

 (nextAddr . nat) 
 (csstack . stack) 
 (pendingQueue . PendingEventQueue) 
 (curTime . nat) 
 (cmdLineArgs . stringList) )) 

Figure 3 MddContext contains the application’s state information and is updated by each line of action 
language 

The context consists of a heap, stack, a next address counter, a clock, an event queue, and list of 
command line arguments.  The heap represents application memory, but in a simpler way, as a 
mapping of an address (a natural number) to an object in memory.  The MddContext is a 
reusable platform, so the types of objects on the heap are deferred, as shown in the definition of 
HeapMemory above, mapping the address to the all data type.  FORMED refines the 
HeapMemory to <application>HeapMemory , a list of UML-derived objects for each 
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application, as shown below, with a theorem showing it as a subtype of the HeapMemory and 
convenience function to be used in other theorems.   

(defdata <application>HeapMemory (map address SystemHeapObjects)) 
(defthm heap-subtype 
  (implies (HotelDCHeapMemoryp heap) (HeapMemoryp heap)) 
  :rule-classes (:tau-system)) 
(defunc constrainedHeap (MddContext) 
  (HotelDCHeapMemoryp (mget :heap MddContext))) 

Figure 4 FORMED refines the heap definition per application 

Access to the data on the heap first goes through the address to access the object that maps to it.  
Then, attributes within the object may be accessed.  There is no direct memory access to internal 
attributes like C++ or Java memory models.   

The stack component of the MddContext models the stack of a C++ or Java execution platform, 
providing a “scratch pad” of local variables for operations to perform their computations.  UML 
operations map directly to ACL2s functions, which could use ACL2s let and let* constructs for 
defining local variables.  However, ACL2s, as a functional language, does not support iteration, 
but required iteration to be expressed as recursion.  Thus, UML action language constructs such 
as FOREACH and WHILE must be mapped to recursive functions whose implementation is the 
loop body.  Those recursive functions would not have access to the ACL2s stack of the function 
containing the loop.  The MddContext stack allows functions to share the local variables between 
the operation functions and the recursive functions.   

The stack maps a string, representing the local variable name, to a value of any type.  The stack 
interface provides access to write and read local variable values.  A read returns the last written 
value, or nil if no value had been written.   

Each UML operation, as defined by the translation rules into ACL2s, pushes a new stack entry 
onto the stack for its own local variables at the beginning of the function and pop the stack at the 
end of a function.  Operations only have access to the top of the stack, and cannot access the 
stack of other functions.  There is no ACL2s language support for encapsulation, so hand-written 
ACL2s code could be inserted to alter stack entries of other functions.  Theorems prove that this 
does not happen when using the MddContext API. 

The required push/pop semantics of the stack, as well as functional language constraints, are the 
reason the UML action language constrains the use of the RETURN statement to the end of the 
function.  FORMED UML operations are single entry, single exit.   

The eventQueue supports finite state machine execution (see section 4.14) and contains the set of 
events that have been sent but have not yet been processed.  The eventQueue delivers events to 
objects, which are received and processed according to the object’s state machine.  Events 
resulting from actions triggered by handling the event are placed on the eventQueue for delivery 
and processing.  (See section 4.14 for more on state machine semantics) 
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The curTime attribute of the MddContext represents a virtual clock that also relates to finite state 
machine execution, but only to support proper event ordering.  State actions and functions in 
FORMED are all run-to-completion and assumed to take zero time.  The FORMED profile, 
based on the underlying PathMATE tool, allow events to be sent with a delay, meaning that 
when the event is processed, the MddContext time must be updated to enable other delayed 
events in the correct order.   

The MddContext attribute cmdLineArgs represents the list of strings passed to the application 
via the command line.  ACL2s does not have access to command line arguments the way C++ 
and Java do, so cmdLineArgs provides the equivalent behavior.  This is supported mainly for 
conformance testing.  Access to the arguments is provided by the GetCommandLineArgs 
operation of the SoftwareMechanisms package.  This function is not generated, but hand 
implemented, and is described in section 4.13. 

The table below defines the API functions that operate on the MddContext, grouped by the part 
of the context they operate on.  A separate (large) set of theorems describes the properties and 
interrelationships of these functions.   

Table 4 MddContext API functions 
Function Parameters Return Value 

Description 
Stack Functions 

ctxpush fnName MddContext MddContext pushes stack for a new 
operation 

ctxpop MddContext MddContext pops stack when leaving 
operation 

ctxHead MddContext Entry returns the current stack 
ctxsetvar varName val 

MddContext 
MddContext adds name-value pair to 

stack's alist 
ctxgetvar varName 

MddContext 
Val returns top alist entry for 

varName 
Heap Functions 

addToHeapLocalVarAddr val addrName 
MddContext 

MddContext adds object to heap, 
address on stack 

getFromHeap addr MddContext Object get an object from the heap 
rmFromHeap addr MddContext MddContext delete an object from the 

heap 
classExtent type MddContext objList Get UML class extent from 

the heap 
readAttr attrName addr 

MddContext 
Val Gets heap object's defdata 

record 
writeAttr attrName addr val 

MddContext 
MddContext Updates the  heap object's 

defdata record 
Association Functions (also accesses heap) 

addToManyAssoc container 
assocName obj 

MddContext inserts an address into the 
association list of an object 
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MddContext 

rmFromManyAssoc container 
assocName obj 
MddContext 

MddContext removes an address from 
the association list of an 
object 

setSingleAssoc container 
assocName obj 
MddContext 

MddContext sets the address of an 
association pointer of an 
object 

clearSingleAssoc objList assocName 
MddContext 

MddContext clears the address of an 
association pointer of an 
object 

rmFromOtherSides rmObj objList 
assocName 
MddContext 

MddContext removes an address from 
other objects that point to 
it 

unlinkFromAll srcObj assocName 
otherSides isSingle 
MddContext 

MddContext removes an address from 
other objects that point to 
it 

traverseNav src assocName 
MddContext 

resultList returns a list of pointers 
related to the src objects 
across accosName 

Finite State Machine Functions 
enqueueEvent ev selfDirected dest 

src fireTime params 
MddContext 

MddContext Creates and adds the event 
to the MddContext 
pendingQueue 

getPossibleNextEvents MddContext PendingEvenetQueue Returns a list of the 
context's pending events 
that can be handled next 

getNextEvent index possibleList matbeEvent Returns the event in the 
possibles list at the index, 
or nil if the index is out of 
range of the list is empty 

removeEvent ev MddContext MddContext Removes the event from 
the pendingQueue, with the 
expectation that it will be 
handled 

handleEvent pendingEvent 
MddContext 

MddContext Generated function that 
delivers the event to the 
class function that handles 
it 

cancelEvent ev dest MddContext MddContext Deletes the next delayed 
event to the destination 
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The context provides a reusable platform for executing the UML application models in ACL2s.  
This platform is reused across all UML models, but may also be generic enough to support other 
DSL mappings.   

The MddContext is similar to the Stateman state manager platform developed to represent 
hardware byte addressable memory and program counters [9]. 

4.7 Extents and Pointers 
The FORMED UML profile includes the concept of class extents, where a class keeps track of 
all its instances. While we could have set up additional bookkeeping to track these, instead we 
chose to query the heap every time an extent is requested.  The _umlTypes attribute, added to 
each defdata derived from a UML class, tags the heap object with its type, and since the heap 
only contains objects of the UML classes, we can easily query the heap for a class' extent, 
returning an objList where every member points to an object in heap of the specified type. 

Additionally, for each UML class we generate a helper function that verifies that given a list of 
pointers to objects in the heap, the objects referenced by each pointer is an instance of the 
particular UML class. These verify functions are called whenever a class extent is referenced or 
an association traversed in the action language. These functions are useful in specifying 
properties of the UML application as well as in runtime validation.   

While dynamically rebuilding the extent by querying the heap was a straightforward, 
maintainable implementation, the approach presented problems with proofs.  First, the heap 
interface, built on top of the ACL2s map data type, consisted of mset and mget functions whose 
properties were well defined, but whose implementations were hidden.  The opacity of these 
functions made it difficult to reason about the contents of the heap, requiring us to reason about 
analogs of the heap.  For example, an extent lemma that stated if an object, with a type, exists on 
the heap, then that object will be returned in the type’s extent.  That lemma turned out to be 
difficult to prove on its own (see section 4.8.3 for the solution). 

Alternative implementations, such as implementing the heap as an association list may allow 
easier proofs, given its transparent implementation as compared to the map.  Also the extra 
bookkeeping involved with explicitly managing the extents as sets of object references in the 
ACL2s implementation, would have provided additional opportunities for lemmas that 
dynamically rebuilding the extent did not. 

FORMED used a natural number, representing the address of an object, as the key to looking up 
the object on the heap.  However, this did not provide the type safety required by some theorems. 
There was no guarantee that address 105 would reference a Room, as required by a theorem, and 
the base functions only guaranteed an object or nil.  We generated additional functions and 
theorems to enforce type safety, checking the type requested against the type of objects retrieved.  
These functions provided type safety both on extents and association traversals (e.g., from Hotel 
to all of its Rooms).   
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We considered, early on, making the address more complex, by adding the type of the object 
referenced [10].  At the time, we chose simplicity of implementation.  We did not have time to 
experiment with the typed addresses to determine how it impacted type safety and the theorems 
that required it.  (Future work) 

Object-oriented inheritance was another concept that needs to be adapted in mapping to ACL2s.  
The _umlTypes attribute was implemented as a list, to account for inheritance trees.  Dynamic 
binding could be simplified during transformation to account for all subtypes of a class – no new 
subtypes would be added.  Thus, subtype operations could override supertype operations, and in 
ACL2s, the implementation pattern would be to provide an implementation at the supertype that 
would examine the type of object the operation was called on, and invoke the correct subtype 
operation.    

One area for further work, associated with defdata would be to simulate higher order logic 
functions, e.g., projection of a set of Person objects to a set of names.  This capability would 
have proved useful for the uniqueness theorems.  (Future work) 

4.8 Theorem Management 
This section describes our experiences performing proofs in ACL2s under FORMED.  ACL2s is 
a semi-automated theorem prover that uses heuristics to prove a theorem using other theorems it 
“knows”, and by applying techniques such as rewrite, induction and equivalence.   However, 
ACL2s sometimes requires guidance, in the form of restricting the theorems it applies.  Some 
theorems may be applied incorrectly during the heuristics, leading either to a failed proof or non-
termination.   

4.8.1 Proof versus Programming 
Since one of the primary objectives of the FORMED project was to make proof engineering 
accessible to regular programmers, it was natural for us to approach proof construction from a 
programming mindset. For example, in many cases our choice of data representation or 
algorithm was typical of what a software engineer might choose. We intentionally proceeded 
along lines that would be familiar to the average programmer. 

However, what we discovered is that although proof systems can be made more accessible, they 
do require a shift in mindset to accommodate the differing needs of proof. As an example: one of 
our fundamental data structures was an object heap. We chose a mapping structure from indices 
to objects, and allowed objects of any type to be stored in the heap. 

This worked well for quite some time. However, as we started trying to prove more complex 
theorems concerning alterations of the heap (see section 4.7), this choice of data structure, and its 
inherent dynamism, began to hinder our work significantly. 
The mapping structure, while more efficient than a typical association list, did not allow 
reasoning about its internal structure. This meant that properties such as the ordering of elements, 
or the set of all possible elements in the heap, could not be used conveniently in proofs. 

Likewise, our choice of a heterogeneous heap led to many complications.  For example, showing 
that an object of a certain type in the heap must be returned in a search for all objects of that type 
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proved impossible to demonstrate using just the heap and its interface functions, mget and mset. 
Had we separated the heaps by object type, this sort of proof would have been trivial.  Instead, 
we had to use a technique defining equivalent functions, described in section 4.8.3 below.   

These experiences have led us to realize that crafting a model suitable to proof is a different 
thing from crafting an efficient program. Sometimes, the worst possible choice for an 
ordinary program, can lead to the simplest and most efficient proofs. As long as there is a proven 
equivalence between these two domains, there is no harm done, except that the FORMED user 
must be aware of the differing needs of each domain. 

4.8.2 Performance 
Since the primary goal of proof engineering is to produce evidence of a property, it can be easy 
to overlook orthogonal concerns like proof performance.  However, on the FORMED project we 
discovered that a little attention paid to such matters can go a long way. 

ACL2s includes instrumentation to help determine which theorems are useful during proofs, and 
which lead to “dead ends”.  The ACL2s construct accumulated-persistence enables this 
instrumentation, and counts how many times each theorem is applied and how many times it has 
led to successfully solving a goal or subgoal.   

For example, a proof of one particular theorem took ten minutes to pass in the end. Considered 
on its own this is acceptable, but those 10 minutes were repeatedly paid as we tested each new 
helper lemma. Had we used the "accumulated-persistence" mechanism from the beginning, to 
determine why it was so slow to process, it would have greatly sped up the development and test 
cycle. Later applications of the technique proved this to be true. 

Another method that was sometimes employed was to prove theorems in the least environment 
possible, disabling most theorems, to avoid any performance impact from ACL2 knowing too 
much. The greater the number of theorems enabled, the more ACL2s has to go through to find a 
working proof structure.  After the theorem had been proven, it was copied into the destination 
context and reproved there. It still took much longer to execute in the final location, but no 
cumulative cost was paid to develop it. 

Theorems may include hints to instruct ACL2s on which theorems should be enabled or disabled 
for the proof.  While this can optimize a stable proof, it does not provide flexibility when 
updating the model, under maintenance, for example.  Attempts to group the generated theorems 
together to easily enable and disable them did not ease the effort.   

A secondary consequence of paying attention to performance from the outset is that if most 
theorems pass quickly, any attempted theorems that take too long will likely never pass -- or time 
should be spent on performance analysis before continuing.  Even if a proof passes when run 
overnight, this communicates a need to improve the environment, more than the mere result of 
the proof itself. 
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4.8.3 Equivalent Functions 
The FORMED MddContext heap was built on the ACL2s map construct, with simple, but 
opaque, API functions mset and mget, to add and retrieve objects using integer keys.  The 
implementation of mset and mget functions is very efficient but difficult to reason about.  ACL2 
provides a set of rewrite rule that are often sufficient for reasoning about functions defined using 
mset/mget procedures.  While the map provided the basic theorems for its operation, it did limit 
our ability to reason about its contents.   

In one example theorem, if an object of type A exists on the heap, then it should be returned in 
the extent of A, computed by searching the heap for objects of type A.  To prove this, we defined 
get-value, a function that provides functionality on MddContext heap similar to what mget 
provides for a map.  We:  

• proved the get-value function behaves equivalently to mget,
• proved that the object would be reported in the extent of type A if using get-value to

search, then
• proved that the object would be reported in the extent using mget

Section 4.7 describes more on extents and pointers, and the suggestion that we swap out the 
heap’s map implementation with a less efficient, but more proof-friendly alist.   

4.8.4 History variables 
Often state of a system is augmented with history variables that record a sequence of past values 
that some state variable took in the past. History variables do not change the behavior of the 
system in any way, but greatly reduce the proof effort.  

For example, proving a uniqueness theorem that all objects in the Person class extent have a 
unique name could use a list variable names to capture the names of the Persons.  The list 
variable would be updated as Persons were added, deleted, or changed their names.  The proof 
would then flow 

• the names list was a projects of the Person names, using an invariant,
• the application enforces that names in the list are unique,
• therefore the names in the Person extent are unique.

Added history variables in the UML make the implementation less efficient, adding overhead in 
terms of execution time and memory, although they do not affect the behavior.  We optimize out 
the history variable by marking it as Deleted in the properties.txt file, where the transformation 
will remove all references to the variable so it does not appear in the implementation.  
Correspondence testing would show that the efficient Java implementation and less efficient 
ACL2s would behave the same.   

Note that we did not use history variables in our current set of proofs, but defined the approach 
to using them. 
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4.9 Counterexamples 
Counterexamples provide important feedback, especially to novice ACL2s users, on defects in 
conjectures or functions. The example can be used to reverse engineer a failing test case that can 
be used to understand and fix the underlying problem.  

Indeed, for developing and proving theorems about functions and not operating on the 
MddContext application state, counterexamples were very useful.  

The initial hand-coded ACL2s model of the hotel lock and key (Figure 5) consisted of just the 
core logic of determining whether to unlock the door and whether to update the lock state.  The 
core safety theorem, that the previous key could not unlock the door once a new key was used 
successfully (Figure 6).  

(defun unlock (lock cardCodes) 
  (let ((cardCode1 (mget :curCode cardCodes)) 
        (cardCode2 (mget :prevCode cardCodes)) 
        (lockCode  (mget :code lock))) 
    (cond ((equal lockCode cardCode1) t) 

 ((equal lockCode cardCode2) t) 
 (nil)) )) 

(defun updateLockCode (lock cardCodes) 
  (let ((cardCode1 (mget :curCode cardCodes)) 
        (cardCode2 (mget :prevCode cardCodes)) 
        (lockCode (mget :code lock))) 
    (cond ((equal lockCode cardCode1) lock) 

 ((equal lockCode cardCode2) (RoomLock cardCode1)) 
 (t lock)))) 

;; returns the new lock state and if the door should unlock 
(defun enterRoom (lock cardKey) 
  (cons (updateLockCode lock cardKey) (unlock lock cardKey))) 

Figure 5 Hand-written model of hotel lock logic to update the lock state and decide to unlock. 

(defthmd next-key-unlocks-prev-key-denied 
  (let* (; guest1 enters with key1 
         (g1CanEnter (Hotel_Lock_checkKey lock key1 MddContext)) 
         ; guest2 enters with key2, which succeeds key1 
         (g2CanEnter (Hotel_Lock_checkKey lock key2 (mget :MddContext g1CanEnter))) 
         ; guest1 tries to enter 
         (g1CannotEnter (Hotel_Lock_checkKey lock key1 (mget :MddContext g2CanEnter)))) 
        (implies (and (MddContextp MddContext) 

 (natp lock) 
 (natp key1) 
 (natp key2) 
 (Hotel_Lockp (getFromHeap lock MddContext)) 
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 (Hotel_CardKeyp (getFromHeap key1 MddContext)) 
 (Hotel_CardKeyp (getFromHeap key2 MddContext)) 
 (equal (mget :_retval g1CanEnter) t) 
 (equal (mget :_retval g2CanEnter) t) 
 ; key2 succeeds key1 (key2.prevCode == key1.curCode) 
 (mget :_retval (Hotel_CardKey_succeeds key2 key1 MddContext)) 
 (not (equal (mget :curCode (getFromHeap key1 MddContext))  

 (mget :curCode (getFromHeap key2 MddContext)))) 
 (not (equal (mget :curCode (getFromHeap key2 MddContext)) 

       (mget :prevCode (getFromHeap key1 MddContext)))) 
  (equal (mget :_retval g1CannotEnter) nil)))) 

Figure 6 ACL2s Counterexamples identified cases (in bold) where the theorem failed – when keys are 
duplicate or inverse. 

Counterexample generation (cgen) in ACL2s correctly identified counterexamples when 
the cards are duplicates of each other (an easy to overlook corner case), and when the cards 
are inverse (previous.curCode = next.prevCode and prev.prevCode = next.curCode) causing the 
lock state to toggle but always permitting either card.   

Counterexample generation also helped the development of the MddContext and its reasoning 
framework theorems.   

Cgen failed to produce any counterexamples at the UML application level.  Cgen assumes that 
the most critical values in a nested defdata structure like MddContext appear at the top, whereas 
the interesting application data exists in the heap, 3 levels deep in the MddContext.   

Another counterexample generation problem arose from the data type of the heap, a map from 
address to all, allowing a much wider variation of heap objects than actually allowed by the 
application.  Application specific restrictions on the heap narrowed the types of objects to only 
those derived from the UML models (described in section 4.6).   

Finally, cgen could not generate examples that were well-formed with respect to the FORMED 
UML profile semantics.  In particular, the bidirectional referential integrity of associations 
requires that each object of a pair of linked objects contain a reference to the other.  In Figure 7, 
semantics of association A2 require that the Room have a reference to the Hotel, and the Hotel 
contains a reference to the Room.  Cgen could not generate examples that would meet the 
bidirectional constraint.   
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Figure 7 FORMED semantics require bidirectional referential integrity 

 
Since counterexamples were initially assumed to be an important asset to novice ACL2s users, 
we designed our own counterexample generation algorithm for FORMED based on the UML 
class diagram.  We integrated with the existing cgen algorithms through the use of a new ACL2s 
construct, defdata-attach :enumerator that allowed us to insert our custom example enumeration 
algorithm for the heap. 
 
Each UML class generates its own enumeration function that makes use of the ACL2s functions 
for most of its attributes, but ensures the integrity of the associations.  The enumeration function 
take a natural number as a randomization seed, an MddContext containing the heap being 
constructed, and an association name, to prevent recursion over an association.  The 
randomization seed is decreased across each association and guarantees termination of the 
algorithm. 
 
The class enumerator function first uses the enumerator generated by the defdata construct to 
create the initial object.  Then the function resets the association attributes to ensure the 
bidirectional property is preserved.  It then adds the new object to the heap and gets back its 
address.  From there, it creates and links objects across associations, using other class 
enumerator functions, before returning an MddContext and its modified heap along with the 
address of the object just created (in case it will be linked by a calling class enumerator 
function).  Two example mutually recursive functions are shown below in Figure 8, but only 
formalizing one association, and using function fdecr to decrement n.   
 

(defun f-nth-hotel_room (n MddContext notAcross) 
  (let* ((obj (nth-hotel_room n)) 
         (obj (mset :acrossA1_to_lock nil obj)) 
         (obj (mset :acrossA2_to_hotel nil obj)) 
         (obj (mset :acrossA7_to_currentOccupant nil obj)) 
         (addr-heap-cons (addToHeap obj MddContext)) 
         (ptr (car addr-heap-cons)) 
         (MddContext (cdr addr-heap-cons)) 
         (MddContext  
          (if (equal notAcross 'A2)  
              MddContext 
              (let* ((h-ctx-cons (f-nth-hotel_hotel (fdecr n) MddContext 'A2)) 
                     (hptr (car h-ctx-cons)) 
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      (MddContext (cdr h-ctx-cons)) 
      (MddContext (link_Hotel_A2 hptr ptr MddContext))) 

       MddContext)))) 
       (cons ptr MddContext))) 

(defun f-nth-hotel_hotel (n MddContext notAcross) 
  (let* ((obj (nth-hotel_hotel n)) 
         (obj (mset :ACROSSA13_TO_SIGN nil obj)) 
         (obj (mset :ACROSSA14_TO_PAYMENTSYSTEM nil obj)) 
         (obj (mset :ACROSSA3_TO_CARDKEYENCODER nil obj)) 
         (obj (mset :ACROSSA2_TO_ROOM nil obj)) 
         (addr-heap-cons (addToHeap obj MddContext)) 
         (hptr (car addr-heap-cons)) 
         (MddContext (cdr addr-heap-cons)) 
         (MddContext  

  (if (equal notAcross 'A2) 
    MddContext 
    (let* ((room-ctx-cons (f-nth-hotel_room (fdecr n) MddContext 'A2)) 

     (roomptr (car room-ctx-cons)) 
     (MddContext (cdr room-ctx-cons)) 
     (MddContext (link_Hotel_A2 hptr roomptr MddContext))) 

      MddContext)))) 
      (cons hptr MddContext))) 

Figure 8 Mutually recursive class enumerators create objects to populate heap 

The heap enumerator uses the class enumerators, choosing, based on the seed, one or more 
starting point classes for the example heap object population. 

(defun f-nth-HeapMemory (n) 
  (let* ((MddContext (initCtx)) 
         (i (mod n 2)) 
         (MddContext 

   (case i 
   (1 (cdr (f-nth-hotel_hotel n MddContext nil))) 

 (2 (cdr (f-nth-hotel_room n MddContext nil))) 
   (otherwise MddContext) ))  ) 

        (mget :heap MddContext)  )) 
Figure 9 Custom heap enumeration function generates well-formed FORMED object populations to try as 
counterexamples 

(Future Work) We did not have time to implement this algorithm, so experimentation and 
evaluation of its effectiveness remains as potential future work.  

(Future work) Counterexamples become a transient part of the development process.  Developers 
use them to fix their theorems or functions and move on.  Those counterexamples usually expose 
important corner cases could be captured and reused as test cases.  

4.10 Process 
The simplified FORMED development process goes from UML to proofs as described in the 
steps below.  
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• Model - model-based development captures the software specification in a form that can 
be used to generate additional software production artifacts 

• Test – simple (unit) testing is an understandable and efficient way to make sure the model 
is in the right ballpark.  (Specific test cases are a very simple way to state requirements – 
albeit incomplete.) 

• Proof Plan – Define invariants, pre-conditions, and post-conditions. ACL2s evaluates 
proof plan and provides counter-examples.  

• Prove – only prove properties once initial testing and analysis indicates proof is likely to 
succeed. 

• Test – confirm correspondence of model and code and demonstrate proofs with additional 
testing (to provide traditional visible evidence) 

4.10.1 Maintenance  
One thing common to all software development is change.  Change comes from changing 
customer requirements, evolving understanding of requirements, new features, and performance 
tuning, among other sources.  Proof structures, however, are remarkably intolerant of change, as 
shown in the experience paper applying Coq to software development [11]. 
 
FORMED incorporates changes into the process by allowing modifications to the source UML 
model, allowing proofs to fail, so generated code can be tested while rebuilding the proofs in 
parallel.   
 
Though maintaining proofs while software is undergoing changes is difficult, it is also very 
valuable.  Proofs encode an infinite number of test cases, and detect violations of invariant 
requirements that tests cannot.  In the Hotel example, we proved that once a new guest enters a 
room, the previous guest no longer has access, provided the card keys are encoded such they are 
not identical to or inverse of each other.  We then added a new feature, a master key, to the 
system.  Tests passed, including new tests for the master key.  But the security property, that the 
previous guest no longer has access, was violated.  The tests did not detect this, but reproving the 
security theorem failed, revealing the condition where the previous guest’s key matched the 
master key.  While we expected counterexample generation to detect this, issues described in 
section 4.9 prevented this.  The failed expression from the proof was enough to require a new 
assumption be added to the proof and a corresponding requirement added to the card key 
encoder, to prevent guest keys from being encoded with the master key codes.   

4.11 Approach to DSLs in General 
As described in the paper presented at the NASA Formal Methods Symposium [12], the 
FORMED approach applies to domain specific languages in general, not just UML.  On a 
separate project called SITAPS (Specification Improvement through Analysis of Proof 
Structure), we transformed the Ivory textual DSL, optimized for drone flight control, into ACL2s 
to prove properties about the functions.  While we believe ACL2s with its theorem proving 
support is a good formal language for verification, mappings to other formal languages such as 
Coq could also be made.   
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Figure 10 Domain specific languages (DSLs) drive both implementation and formal verification 

4.12 Metrics 
FORMED metrics reports the lines of code and number of theorems both generated and hand-
written.  This section describes the collection of the metrics.     

Lines of Java code were counted using the open source tool JavaNCSS, from 
http://www.kclee.de/clemens/java/javancss/.  Lines of ACL2s were counted by counting the 
number of open parentheses “(“, since each represents a function call, assignment, or branch 
condition.   

Generated lines of code were kept separate from hand-written lines of code, since regeneration 
would clobber any hand edits, easing the tracking of hand vs automated code.   

No attempt was made to collect effort metrics on theorem code, and, to our knowledge, no effort 
per line of code metrics have been published for any formal verification language.   

Theorem metrics were created by counting the number of thm, defthm, defthmd and defthmt? 
statements.  Each of the above keywords represents a theorem, but ACL2s handles them each in 
a different way.   

More work remains to evaluate the efficacy of the generated theorems in supporting application 
level proofs.  While some of the theorems supported proving other theorems, some theorems 
remained unused, and these depended upon the application theorems developed.  Where, in the 
process of proving theorems, we identified required lemmas, we automated the generation of 
those lemmas where possible.  As a result, FORMED generates more theorems than would be 
required, since lemmas about an association, for example, would be replicated for each 
association in the model.  (Future Work) Research into management of the theorems and lemmas 
to prove the application level properties would both guide the novice ACL2s user and optimize 
the verification process.   
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Table 5 Metrics of lines of code and theorems show 90% lines generated or reused. 

 
 
Table 5 shows lines of code and number of theorems applied to the pedagogical Hotel example, 
the military equipment management application, and an internal planning prototype developed 
using UML prior to the FORMED project.  The platform code and theorems, consisting mainly 
of the MddContext, are reused across all examples.   
 
The generated ACL2s code is meant to support theorem proving, and not be an efficient 
deployable implementation.  Extra lines of code were generated (and duplicated) to facilitate 
theorem proving. Still, the size of the ACL2s code is close to the Java code, although the Java 
code in the equipment and planner examples includes a large number of XML related code that 
the ACL2s does not.   
 
While there is no upper bound on the number of hand-written theorems or lines of code, as we 
identified common patterns and lemmas in our proof effort, we folded those patterns back into 
the ACL2s code generation.  While we expect application theorem proving to be manual while 
the technique matures, we still expect 90% of the code and theorems to be automatable.   

4.13 Component Composition with Encapsulate 
Packages in the FORMED UML profile are opaque, hiding the details of their implementation 
behind a façade interface.  Using this strict API, development of a package depends only on API 

Hotel Locks Equip Mgmt Planner Prototype
# Classes 14 33 103
#operations 30 58 209
AL SLOC 290 187 1594

Java Java SLOC 3197 7959 27780

Functions 220 335 1143
Defdata 84 98 259
SLOC 4786 6139 24118

Theorems (thm + defunc) 640 960 3472
Theorems SLOC 8082 11578 43348

Theorems (thm + defunc) 59 59 228
Theorems SLOC 1216 1356 5243

Theorems (thm + defunc) 76 44 0
Theorems SLOC 1920 704 0

Functions
Function SLOC
Theorems (thm + defunc)
Theorems SLOC

Total SLOC 18817 19777 72709
Hand SLOC 1920 704 0
%gen/reuse SLOC 90 96 100

1550

Summary

Auto Semantics Thm 
ACL2s

Auto App Thm ACL2s

Hand Thm ACL2s

Platform

UML

Exe ACL2s

62
1263
198
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calls to other packages.  FORMED uses an assume-guarantee approach across package APIs to 
reason about package behavior independently, while also guaranteeing behavior about their 
composition.   

FORMED maps domain façade operations to ACL2s functions, but for operations that are not 
implemented with the FORMED profile, FORMED generates an ACL2s stub.  Developers can 
then use ACL2s encapsulate to define the properties the function.  Encapsulate defines the 
function signature and theorems about the function, but requires a simple, hidden implementation 
of the function in order to prove the properties.  The function can then be called by others, and 
the properties defined in the encapsulate statement used to support other properties.   

The ACL2s code below shows the encapsulate statement wrapping 
SW_GetCommandLineArg(index), a function to access the parameters passed on the command 
line to the executable.  The actual implementation of the function differs for ACL2s, Java, and 
C++, and so is hand-written for each of those target languages.  The interface remains the same, 
returning the string at the index or an empty string if the index does not exist.   

(encapsulate 
  ((SW_GetCommandLineArg (i MddContext)  ; signature 

     t 
     :guard (and (MddContext-typep MddContext) (natp i)))) 

  (local (defun SW_GetCommandLineArg (i  MddContext)  ; local example implementation 
  (declare (ignore i) 
     (xargs :guard (and (MddContext-typep MddContext) (natp i)))) 

           (SW_GetCommandLineArg_Output "" MddContext))) 
  (defthm returnsEmptyStringEventually    ; property – returns empty string 
    (let ((n (length (mget :cmdLineArgs MddContext)))) 
     (implies (and (natp n) 

    (natp i) 
    (MddContext-typep MddContext) 
    (> i n)) 

     (equal (length (mget :_retval (SW_GetCommandLineArg i MddContext))) 0)))) 
  (defthm contract      ; property – interface contract 
    (implies (and (natp i) 

  (MddContext-typep MddContext)) 
       (SW_GetCommandLineArg_Outputp (SW_GetCommandLineArg i MddContext)))) 

  (defthm readonly      ; property – does not alter the heap or stack 
    (implies (and (natp i) 

         (MddContext-typep MddContext)) 
    (equal (mget :MddContext (SW_GetCommandLineArg i MddContext)) MddContext ))) 

) 

Figure 11 ACL2s encapsulate statement defines properties to access command line arguments from the 
FORMED model 

The signature includes a guard that defines the input parameter types, and these must align with 
any implementation of the function.  ACL2s requires an example implementation of the function 
to be able reason about any properties claimed about it, but the function is declared local so it is 
not visible outside of the encapsulate statement.   
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The theorems in the defthm statements claim that the function returns an empty string when the 
index is greater than the length of the args list in the MddContext, that it returns a string and the 
MddContext, and that the MddContext returns unaltered by the function.  The local 
implementation is used to verify that there is at least one function that meets these properties.   
 
These properties are then used to prove termination of the following PAL statements.  Since i 
increases, and we have a property that the function will eventually return an empty string, the 
while loop will terminate.   
 

Integer i = 0; 
String xmlFile = ""; 
WHILE  (xmlFile != "") 
{ 
 xmlFile = SoftwareMechanisms:GetCommandLineArg(i); 
 i = i + 1; 
} 

 
Figure 12 FORMED code to access command line arguments relies on encapsulated properties to prove 

termination 
 
 
While we can reason about this function, at this point, the function cannot be executed, and 
results in a run-time error when encountered running a test case.  ACL2s defattach introduces a 
function as an implementation of the encapsulated function.  Defattach applies the encapsulated 
function’s theorems and proves that they hold in the implementing function.  Defattach also 
connects the encapsulated function with the implementation during execution, so the 
implementation function will be invoked, rather than generating a run-time error.   
 

(defun SW_GetCommandLineArgImpl (i MddContext) 
  (declare (xargs :guard (and (MddContext-typep MddContext) (natp i)))) 
; implementation omitted  
) 
(defattach (SW_GetCommandLineArg SW_GetCommandLineArgImpl)) 

 
Figure 13 Defattach proves an encapsulated function’s implementation conforms to all its properties 

 
 
Encapsulated functions allow independent development of packages and the representation of 
properties of APIs whose implementations are not modeled with FORMED.   
 
Currently, encapsulate statements, their example implementations, and their theorems must be 
defined in ACL2s.  Future work would allow properties to be expressed in OCL and translated to 
ACL2s theorems, and example function implementations in action language also translated to 
ACL2.   
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4.14 State Machine Semantics 
As part of formalizing the executable semantics of the FORMED UML profile, we implemented 
in ACL2s a set of MddContext platform functions (Table 4) that encapsulated the operation of 
the state machines and developed some supporting theorems.   

FORMED maps the UML state models into ACL2s, supported by the MddContext API.  The 
semantics of the state model behavior include: 

• State actions take zero time to execute
• Only one state action is active at a time
• Pending events that have been sent but not yet delivered are stored in a “queue”
• Pending events are handled sequentially, with the following constraints

o Self-directed events are delivered before events from other sources
o Events from a source to a destination are in order
o Otherwise, any pending event may be handled next

• Untriggerred transitions are considered self-directed

State machines, when receiving events, execute the current state’s exit action, followed by the 
transition action, followed by the new state’s entry action. 

Delayed events serve to handle time dependent processing.  Events in action language are sent 
with a delay, to be handled not before that delay expires.  In the ACL2s implementation, the 
current (logical) time is taken from the MddContext and added to the delay, so the event is 
placed in the event queue with the expire time.   

When choosing the next event to handle, the semantics may choose any of the non-delayed 
events according to the constraints above, or the next delayed event (with the smallest expire 
time).  If a delayed event is chosen, the current time (within the MddContext) is updated to the 
expire time of the event, ensuring the correct ordering of delayed events.   

The OMG is currently updating its UML specifications to add firmer semantics for state 
machines.  We are working with this group to bring the formal representation of state machines 
using ACL2s.   

4.15 Theorem Patterns 
As we applied FORMED to the example problems, we integrated the theorems and lemmas we 
developed back into the transformation rules.  The theorem patterns then generated the theorems 
everywhere they were applicable to the UML model.  We used stereotypes and PathMATE 
properties as additional information to guide the application of these patterns.   

Indeed, as we worked to prove the input-output contracts of the generated functions, we noticed 
lemmas about associations that were required to prove the contracts.  For example, functions that 
supported the linking and unlinking of objects over associations do not change the stack.  We 
formalized the pattern of these lemmas and added them to the translation rules so the lemmas 
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would be generated for each association.  ACL2s then applied the new lemmas supporting the 
contract proofs. 

4.15.1 Induction 
FORMED generates the infrastructure for inductive proofs.  A step function takes parameters 
instructing what modeled operation to invoke along with parameters.  The inputCheck functions 
described above make sure that parameters that do not conform to the correct data types still 
return the required (and unchanged) MddContext for the inductive proof.  A simplified version 
of the step function is shown below.   
 

(defun induction_step (op params MddContext) 
  (case op 
         (‘operation1 (operation1 params))  
         (‘operation2 (operation2 params)) … )) 

 
Figure 14 FORMED generates the infrastructure for induction proofs 

 
A run function recursively calls the step function over a list of operations to be executed, with 
parameters.  As free variables within a theorem, the operations and parameters represent all 
possible invocations of the application's API.   
 
FORMED uses this induction infrastructure for many theorems automatically generated from the 
model.  Some examples of inductive proofs derived from the UML model include association 
multiplicity, where an object must be related to one or more objects over an association, and 
unique attribute values across a class extent (all guests must have unique names).   
 
For uniqueness, and other invariant theorems derived from the models, we used static analysis to 
simplify the proof obligation.  Static analysis of the UML model narrows the number of function 
over which we have to induct.  Functions that do not modify the association or attribute that is 
the basis of the proof can be filtered out of the proof.  We do this by generating a proof-specific 
defdata structure enumerating the list of function to induct, and use it to constrain the operations 
passed to the induction step function. 

4.15.2 Uniqueness 
Uniqueness, a common property of many UML models, constrains the values of attributes across 
sets of objects to be unique.  For example, no two people can have the same social security 
number.  Uniqueness is a property that we can apply to a model, and using templates, we can 
generate the theorem for a uniqueness invariant.   
 
The Identifier stereotype applies to attributes within a set, either a class extent or across an 
association that must be unique within that set.  Figure 15 shows a Hotel associated with one or 
more Rooms, each of which must have a unique number.  Another property, not shown here, 
captures the extent or association for the uniqueness property.    
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Figure 15 Room number is tagged as an Identifier, indicating its value must be unique 

Uniqueness is expressed as an invariant and uses induction to prove it holds for all execution 
paths through the system.  The theorem states that if the system starts in a state where uniqueness 
holds, then any possible set of traces through the system will result in a state where the invariant 
also holds.   

4.15.3 FSM fairness 
Proof efforts focused on the properties of communicating finite state machines.  Some of these 
properties require reasoning about the traces, or sequences of events, between the state machines.  
ACL2s has limited support for quantification reasoning with traces, such as identifying the traces 
that can reach an unsafe state using an exists quantifier.  Rather, with ACL2s we must reason 
about all the traces.   

Theorems about the traces of events handled by the set of communicating finite state machines 
must include properties about the traces themselves.  In the case of the FORMED UML models, 
state machines are reacting to events generated elsewhere in the application, and generate other 
events to other objects in the model, while also dealing with external events from outside the 
model, such as timeouts.  Fairness is a property that these traces must possess; otherwise one or 
two objects may dominate the processing and prevent other objects from executing.  This notion 
is similar to thread scheduling in operating systems.  A fairness function constrains both the 
internal event orderings and allowable external event injection to support reasoning about the 
state machine interactions.  This fairness function becomes an assumption about the deployment 
environment that must be examined in addition to correspondence testing. 

4.15.4 Read-only 
UML operations that access data or perform computations and do not modify the state of the 
system (the heap) are read-only.  The property makes a useful lemma when trying to prove other 
properties, perhaps about a function that calls a read-only function.  The UML operation is 
marked using the ReadOnly property (see the User’s Guide), and the theorem is generated from 
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the template.  Read-only implies that the function does not change the stack, heap, or event 
queue of the system.   

4.15.5 Operation Contracts 
Operation contracts define the input and output contracts of a function.  The contracts mostly 
conform to the data types passed in and out, but can include other pre- and post-conditions.   

Contracts can be expressed using the ACL2s defunc construct, similar to defun that defines a 
function.  Defunc captures the input and output as separate expressions, and evaluates the 
contracts against the body of the function.  The function is admitted if all paths through the 
function satisfy the contract.  Additionally, defunc will attempt to prove that the function 
satisfies the input contracts of any functions it calls.   

The MddContext platform functions are all defined using defunc, and include input contracts that 
prevent them from operating on nil object references, the FORMED equivalent to NULL 
pointers in Java or C.  Unsatisfied input contracts at the platform level prevent theorems at the 
application level from being successfully proven.  Thus, once an application function contract is 
proven, there are no NULL pointer exceptions possible in the implementation.   

FORMED uses defun instead of the defunc for defining functions.  Defunc sometimes requires 
lemmas to prove the contract holds, but the code generates the executable functions into a file 
separate from the theorems.  Therefore, we implemented the function input-output contracts as 
separate theorems in the <model>-operations-contract.lisp file.  The theorems still evaluate and 
guarantee no NULL pointer exceptions.   

4.16 Action Language – ALF vs PAL 
FORMED builds on the PathMATE and Topcased tools for UML modeling and transformation.  
PathMATE uses a dialect of action language called PAL, platform-independent action language.  
The OMGs standard syntax for model level action language, ALF, is not yet fully supported by 
tools.  Both ALF and PAL conform to the action language semantics first introduced into UML 
1.5 and carried into UML 2.x.   

Service handles are an extension PathMATE made to the action language.  Service handles 
essentially allow pointers to UML operations to be passed around and invoked later, usually as 
callbacks in response to some event.  Since ACL2s does not support higher order functions, we 
implemented service handles as a function name going through a dispatch function to make the 
invocation.  However, we restricted the operations invoked this way to not invoke any service 
handles themselves, to avoid mutual recursion conflicts.   

4.17 Extensions to ACL2 Sedan 
This section describes the extensions that were made to ACL2s as part of the FORMED effort. 

4.17.1 Bug Fix 
While attempting to prove theorems about the example models, we discovered and fixed a 
soundness defect within ACL2s that resulted in incorrect theorems being proven and accepted.  
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This defect was found during reasoning about one of the function that supports the UML 
semantics in FORMED. The ACL2s termination analysis recorded wrong "measured variable" 
for a recursive function definition introduced using defunc. This resulted in ACL2s inferring an 
unsound induction scheme based on the function definition.    

4.17.2 Defthmt? 
FORMED is expected to generate a number of theorems that initially may not pass, or, as 
development progresses, have theorems that once passed, fail due to changes to the UML model.  
For the convenience of the developer, we created defthmt?( The “?” is part of the name of the 
construct and not an operator), a new theorem definition statement that overrides the default 
stop-on-fail behavior of ACL2s, and continues processing to identify as many issues as possible.  

Defthmt? specifies a timeout, in seconds, after which the theorem is deemed to have failed.  
Some theorems cause ACL2s to “hang” and not complete the processing, while others just take a 
long time.  Defthmt? will treat both of these the same if they exceed the maximum time.  Failing 
theorems are also flagged, but in either case, ACL2s processing continues.  The statement (table 
defthmt-failure-table) reports on the failing theorems and should be placed at the end of any files 
using defthmt?. 

(defthmt? Hotel_hasCurrentKey-is-read-only 
  (let* ((fnOut (Hotel_hasCurrentKey name room before)) 
         (after (mget :MddContext fnOut)) 
        ) 
        (implies (and ;(MddContext-typep after) 

 (MddContext-typep before) 
 (equal (mget :exception before) nil) 
 (equal (mget :exception after) nil) 
 (Hotel_hasCurrentKey_Outputp fnOut) 
 (equal (Hotel_hasCurrentKey_inputCheck name room before) t)) 

        (equalContexts after before))) 
  :time 60  ) 
…
(table defthmt-failure-table) 

Figure 16 Defthmt? Continues processing ACL2s statements after theorem failures or timeouts 

For theorems that pass, defthmt? doubles the time to process the theorem, first to check that it 
will pass, and second to admit the theorem.   

4.17.3 Counterexamples 
Since the default ACL2s counterexample generation did not work for FORMED’s MddContext 
data structure or support the bidirectional association relations between objects on the heap, we 
designed our own counterexample generation algorithm, described insection 4.9.   

We also needed a new build of ACL2 and ACL2s to allow us to replace the default cgen 
algorithm with our own, using (defdata-attach :enumerator).   
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4.17.4 Contradictions in Hypothesis 
Early attempts at ACL2s theorems, examples of novice usage, included theorems that contained 
contradictions in their hypothesis.  These contradictions come about through the complex 
hypotheses and the reasoning about nested functions, where one clause assumes n to be a natural 
number and another assumes n is nil.  Since false implies true, these contradiction allow any 
conclusion to be proven, including nil (or false) which should never be able to be proven.   

So a lesson learned, that when a proof seems too good to be true (pun intended), or passes to 
easily, replace it with nil.  If it still passes, there is a contradiction in the hypothesis.  We 
considered implementing an ACL2s macro to identify contradictory hypotheses, but deferred to 
the simpler “try to prove nil” detection strategy. 

4.18 Obstacles to Software Theorem Proving 

4.18.1 Null Pointers 

One of the most common problems to proving even simple contracts is the assumption about the 
existence of objects when traversing an association or searching a class extent (the set of 
instances of a class).  For example, the code below assumes that an instance of the class EwAsset 
exists in the extent with the attribute self set to true.   

Ref<EwAsset> self = FIND CLASS EwAsset WHERE (EwAsset.self == TRUE); 
GENERATE EwAsset:GetId() TO (self); 

If no such instance exists, an error occurs, as sending an event to an instance that does not exist 
violates the platform semantics of the event queue.   

These assumptions may depend upon the initialization of the component to create the instance, 
but this leads to undocumented coupling.  A change to the initialization may introduce a defect in 
this code.   

Traversing an unconditional association (such as a Room must be contained within a Hotel), 
where at least one instance must be linked on the other side, introduces similar issues.  Here, we 
have the unconditional property of the association, which must be respected by all operations.  
The association has an invariant proof across all action language constructs that operate (LINK, 
UNLINK, DELETE) on the association.  Each operation that operates on the association is part 
of the proof of the association’s unconditional invariant.   

Even with the proven invariant property that a traverse of the association will always yield a non-
null reference, it is difficult to pull that property into another proof.  An assumption, when added 
to the theorem, may state the unconditional property, but that statement is disconnected from 
invariant proof, and could lead to incorrect foundation for other properties.   

To handle both issues, we encourage the use of safe programing of model actions to include 
checks for null references when doing extent lookups of association traversals.  While the 
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translation rules could automatically introduce the checks, the rules could not always define what 
the remedial action should be.   

4.18.2 Heap Size 
The size of the heap was unbounded for the purposes of this research.  Further work would be 
needed to reason about the maximum number of bytes and if memory could be exhausted during 
execution.  This analysis would need to include a sizing of each primitive data type and UML 
object.  Memory fragmentation would require additional detailed modeling about the memory 
manager.  (Future Work) 

4.18.3 Platform Constraints – Data Types 
The size of integer and rational numbers in FORMED, under ACL2s, is infinite.  Further work 
can be done to analyze the platform constraints of 32 bit integers or 64 bit doubles on the 
application behavior, including overflow and underflow conditions.  (Future Work) 

4.19 Correspondence Testing 
The code generator that produces the Java and ACL2s code does not claim to produce artifacts 
that are correct by construction.  No refinement proofs prove either implementation is a correct 
implementation of the model (though that may be an area for future work) though both the 
specification and executable code are generated from the same model. 

FORMED takes a more pragmatic approach, using testing to confirm that both the ACL2s and 
Java implementation produce the same results, i.e., they correspond, and thus proof results apply 
to the source code (which cannot be proven for all cases) and testing results apply to the 
specification (which is part of the correspondence observation). 

State machines introduce non-determinism into the correspondence between Java and ACL2s 
implementations.  Each implementation may choose among multiple pending events, and may 
choose different events to process, leading to different results.  Coordination between 
implementations is required to ensure each operates on the same event.  The Java 
implementation may send notification of its choice to the ACL2s so it may choose the 
corresponding event. We did not use this coordination, but it is described in other work [13]. 

Tests are implemented as part of the model and translated into both implementations.  Tests are 
marked using the VerificationArtifact property to allow them to be removed for deployment.  
Test case generation is manual for FORMED work, but many model-based test case generation 
tools are available [14]. 

Derivation of tests from the proofs is an area for future work.  Test cases that cover each step in 
the proof might be able to prove that the equivalent behavior exists in the implementation as the 
specification.  (Future work) 
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4.20 OCL 
After the initial mapping of UML to ACL2s, we focused on developing and proving theorems at 
the UML semantics and application levels.  Since we were able to express the application level 
theorems directly in ACL2s, we postponed implementing the Object Constraint Language (OCL) 
[15] to ACL2s transformation, as it was lower risk than defining and proving theorems.  OCL, a 
specification closely related to UML, expresses declarative constraints on UML models, such as 
preconditions, postconditions, invariants and association constraints.   

As UML model elements are mapped to ACL2s, OCL constructs map to ACL2s functions and 
theorems.  OCLS collections and extents map easily down to the extents collected from the heap, 
the lists that support associations, and other list constructs.  (Future Work) 

5 Conclusions and Recommendations 
FORMED integrates formal verification into software design and development by precisely 
defining semantics for a restricted subset of the Unified Modeling Language and transforming 
application models into both an ACL2s formal specification for analysis and Java code for 
deployment.  Correspondence testing verifies consistent translation and executable behavior 
between the formal and deployed implementations.   

FORMED creates an IDE integrating the UML and ACL2s tools under the Eclipse framework.  
The integration provides the connection between the UML model and the generated ACL2s code 
to assist the application developer in understanding the specification code and in learning the 
ACL2s environment.  FORMED envisions the application developer worked together with a 
verification expert to perform the proofs that are not automated.  ACL2s takes time for novices 
to learn, and working within the framework and an expert reduces the learning curve.   

We were able to automate generation of a number of theorems and automated a subset of their 
proofs.  Operation input-output contracts ensure no null pointer references.  Termination proofs 
verify that no infinite loops or live-lock conditions exist.  Theorems verify that UML operations 
respect invariants such as unconditional relationships and unique attribute values across sets of 
objects.   

To reduce or eliminate the visibility of the formal verification tools more research is required to 
identify proof patterns and the useful lemmas on top of the UML semantics and MddContext 
platform.  Not all lemmas support application properties, and too many lemmas make the 
knowledge space ACL2s must deal with too large.  Generation of lemmas should be balanced 
with the management of the active theorems to guide the ACL2s heuristics in proving theorems.  
This management requires determining the proof strategy from the type of theorem and from the 
UML models. 

5.1 Application to High Assurance Software Development 
The application of formal verification to high assurance software development needs to be 
explored further.  Current high assurance processes, such as DO178c allows for formal methods, 
but as an add-on.  All other DO178c procedures are unchanged.   
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To incorporate a formal verification tool tightly into the high assurance toolchain, the standards 
require that tool to be developed with the same requirements and procedures as the high 
assurance software itself.  Unfortunately, this is not feasible with formal verification tools that 
typically evolve out of university research.  This makes formal methods looks as just extra work 
with no value added, but does not address the beneficial impact of formal verification on the 
other DO178c steps.   

Many current high assurance development methodologies suffer from one of the following flaws: 

• The proofs are done at the design level but not carried through to the implementation,
relying on manual processes to implement the specification’s properties.

• The implementation is derived from formal design specification, but is an inefficient
implementation and may not integrate well with other components.

• An efficient implementation is derived but the overall scope of the specification
methodology is limited and not sufficient for general application development.

FORMED provides an approach where design level proofs apply to generated code (via 
correspondence), but overall implementation is performed in a software engineering environment 
which supports production of code that fits (i.e., it is efficient and integrates into) the overall 
software engineering effort. 
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

ACL2 A Computational Logic for Applicative Common Lisp 
ACL2s ACL2 Sedan 
ALF Action Language for Foundational UML 
API Application Program Interface 
AST Abstract Syntax Tree 
DSL Domain Specific Language 
FORMED Formal Methods Engineering Desktop 
IDE  Integrated Development Environment  
OCL Object Constraint Language 
OMG Object Management Group 
OO Object Oriented  
PAL Platform-independent Action Language  
PathMATE Path Model Automation & Transformation Environment  
SITAPS Specification Improvement through Analysis of Proof Structure 
UML Unified Modeling Language 
UUID Universally Unique Identifier 
XML EXtensible Markup Language 
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